Abstract

Globally documented wild bee declines threaten sustainable food production and natural ecosystem functioning. Urban environments are often florally abundant, and consequently can contain high levels of pollinator diversity compared with agricultural environments. This has led to the suggestion that urban environments are an increasingly important habitat for pollinators. However, pesticides, such as commercial bug sprays, have a range of lethal and sub-lethal impacts on bees and are widely available for public use, with past work indicating that managed bees (honeybees and bumblebees) are exposed to a range of pesticides in urban environments. Despite this, we still have a poor understanding of (i) whether wild bees foraging in urban environments are exposed to pesticides and (ii) if exposure differs between genera. Here we assessed pesticide exposure in 8 bee genera foraging across multiple urban landscapes. We detected 13 different pesticides, some at concentrations known to have sub-lethal impacts on pollinators. Both the likelihood of pesticides being detected, and the concentrations observed, were higher for larger bees, likely due to their greater foraging ranges. Our results suggest that restricting agrochemical use in urban environments, where the economic benefits are limited, is a simple way to reduce anthropogenic stress on wild bees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call