Abstract

We undertake to derive herein the Wigner-Wilkins (W-W) neutron/nucleus scattering kernel, a foundation stone in neutron thermalization theory, on the basis of a self-contained calculation in quantum mechanics. Indeed, a quantum-mechanical derivation of the W-W kernel is available in the literature, but it is, in our opinion, robbed of conviction by being couched in terms of an excessive generality. Here, by contrast, we proceed along a self-contained route relying on the Fermi pseudopotential and a first-order term in a time-dependent Born approximation series. Our calculations are fully explicit at every step, and, in particular, we tackle in its every detail a final integration whose result is merely stated in the available literature. Furthermore, and perhaps the most important point of all, we demonstrate that the quantum-mechanical W-W kernel outcome is identical down to the last iota with its classical antecedent, classical not only by virtue of historical precedence but also by being based on classical Newtonian mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.