Abstract

The ``little group'' for massless particles (namely, the Lorentz transformations $\Lambda$ that leave a null vector invariant) is isomorphic to the Euclidean group E2: translations and rotations in a plane. We show how to obtain explicitly the rotation angle of E2 as a function of $\Lambda$ and we relate that angle to Berry's topological phase. Some particles admit both signs of helicity, and it is then possible to define a reduced density matrix for their polarization. However, that density matrix is physically meaningless, because it has no transformation law under the Lorentz group, even under ordinary rotations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.