Abstract

Wigner quantum mechanics is reformulated in a discrete momentum space and analyzed within a Monte Carlo approach for solving integral equations and thus associated with a particle picture. General quantum phenomena may thereby be modeled in terms of quasi-particles involving attributes such as drift, generation, sign, and annihilation on a phase space grid. The model is examined in an ultimate regime, where classical and quantum dynamics become equivalent. The peculiarities of the transport in this asymptotic regime are analyzed within simulations, benchmarking the behavior of the Wigner function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.