Abstract

This article gives a semiclassical description of nucleonic propagation through codimension two crossings of electronic energy levels. Codimension two crossings are the simplest energy level crossings, which affect the Born–Oppenheimer approximation in the zeroth order term. The model we study is a two-level Schrödinger equation with a Laplacian as kinetic operator and a matrix-valued linear potential, whose eigenvalues cross, if the two nucleonic coordinates equal zero. We discuss the case of well-localized initial data and obtain a description of the wavefunction’s two-scaled Wigner measure and of the weak limit of its position density, which is valid globally in time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.