Abstract
Wireless sensing is a promising method that integrates wireless mechanisms with strong sensing capabilities. The current focus of using WiFi Channel State Information (CSI) for human activity recognition (HAR) is the line-of-sight (LoS) path, which is mainly affected by human activities and is very sensitive to environmental changes. However, the signal on non-line-of-sight (nLoS) paths, particularly those passing through walls, is unpredictable due to the weak reflected signals destroyed by the wall. This work proposes a method to achieve high-accuracy wireless sensing based on CSI behavior recognition with low-cost resources by showing through-wall and wider-angle predictions using WiFi signals. The technique utilizes MIMO to exploit multipath propagation and increase the capability of signal transmission and receiving antennas. The signals captured by the multi-antenna are delivered into parallel channels with different spatial signatures. An RPi 4 B is attached to an ALFA AWUS 1900 adapter utilizing Nexmon firmware monitors and extracts CSI data with flexible C-based firmware for Broadcom/Cypress WiFi chips. Preprocessing techniques based on CSI are applied to improve the feature extraction from the amplitude data in an indoor environment. Furthermore, a deep learning algorithm based on RNN with an LSTM algorithm is used to classify the activity instances indoors, achieving up to 97.5% accuracy in classifying seven activities. The experiment shows CSI can achieve accurate wireless sensing in nLoS scenarios with extended antennas and a deep learning approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.