Abstract
Wiener model identification and predictive control of a pH neutralisation process is presented. Input-output data from a nonlinear, first principles simulation model of the pH neutralisation process are used for subspace-based identification of a black-box Wiener-type model. The proposed nonlinear subspace identification method has the advantage of delivering a Wiener model in a format which is suitable for its use in a standard linear-model-based predictive control scheme. The identified Wiener model is used as the internal model in a model predictive controller (MPC) which is used to control the nonlinear white-box simulation model. To account for the unmeasurable disturbance, a nonlinear observer is proposed. The performance of the Wiener model predictive control (WMPC) is compared with that of a linear MPC, and with a more traditional feedback control, namely a PID control. Simulation results show that the WMPC outperforms the linear MPC and the PID controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.