Abstract

In this paper we introduce a ten-parameter family of L\'{e}vy processes for which we obtain Wiener-Hopf factors and distribution of the supremum process in semi-explicit form. This family allows an arbitrary behavior of small jumps and includes processes similar to the generalized tempered stable, KoBoL and CGMY processes. Analytically it is characterized by the property that the characteristic exponent is a meromorphic function, expressed in terms of beta and digamma functions. We prove that the Wiener-Hopf factors can be expressed as infinite products over roots of a certain transcendental equation, and the density of the supremum process can be computed as an exponentially converging infinite series. In several special cases when the roots can be found analytically, we are able to identify the Wiener-Hopf factors and distribution of the supremum in closed form. In the general case we prove that all the roots are real and simple, and we provide localization results and asymptotic formulas which allow an efficient numerical evaluation. We also derive a convergence acceleration algorithm for infinite products and a simple and efficient procedure to compute the Wiener-Hopf factors for complex values of parameters. As a numerical example we discuss computation of the density of the supremum process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.