Abstract

A scanning-based second-order moiré method is proposed for high-accuracy deformation measurement in a large field of view (FOV) by analyzing the phase distribution of a single-shot scanning moiré fringe image using a spatial phase-shifting technique. In this method, the grating pitch can be as small as around one pixel in the scanning moiré image to ensure a wide FOV, while high-precision phase measurement is achievable. The strain measurement accuracy has been verified from simulations at different grating pitches, applied strains, and noise levels. The simulation results show that the closer the grating pitch is to the scanning pitch, the smaller the strain measurement error, and the recommended pitch ratio is 0.9∼1.1. Furthermore, the feasibility of this method has been verified from a tensile experiment on an aluminum specimen under a laser scanning microscope with scanning moiré images recorded. The microscale strains of aluminum measured at different tensile loads agree well with the strain gauge results. As an integration of the scanning and sampling moiré methods, this method has the advantages of a large FOV, high accuracy, strong noise immunity, and visualization of magnified deformation. Compared with the traditional phase-shifting scanning moiré method, this method only needs to record a single scanning moiré image and is suitable for dynamic deformation analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.