Abstract

Glassy lava fragments were collected in pushcores or using a small suction-sampler from over 450 sites along the Juan de Fuca Ridge, Blanco Transform Fault, Gorda Ridge, northern East Pacific Rise, southern East Pacific Rise, Fiji back-arc basin, and near-ridge seamounts in the Vance, President Jackson, Taney, and a seamount off southern California. The samples consist of angular glass fragments, limu o Pele, Pele's hair, and other fluidal fragments formed during pyroclastic eruptions. Since many of the sites are deeper than the critical point of seawater, fragmentation cannot be hydrovolcanic and caused by expansion of seawater to steam. The glass fragments have a wide range of MORB compositions, ranging from fractionated to primitive and from depleted to enriched. Enriched magmas, which have higher volatile contents, may form more abundant pyroclasts than depleted magmas. Eruptions with high effusion rates produce sheet flows and abundant pyroclasts whereas those with low effusion rates produce pillow ridges and few pyroclasts. This relation suggests that high effusion and conduit rise rates are coupled to high magmatic gas contents. The eruptions are mainly effusive with a minor strombolian bubble burst component. We propose that the gas phase is an added component of variable amounts of magmatic foam from the top of the magma reservoir. As the mixture of resident magma and foam rises in the conduit, the larger bubbles in the foam rise more quickly and sweep up the smaller bubbles nucleating and growing from the resident magma. On eruption, the process of bubble coalescence is more complete for the slower rising, gas-poor lavas that erupt as pillow lavas whereas the limu o Pele associated with sheet flow eruptions commonly contain several percent vesicles that avoided coalescence during ascent. The spatter erupted at the vent is quench granulated in seawater above the vent, reducing the pyroclast grainsize. The granulated spatter and limu o Pele fragments are then entrained in a rising plume of seawater heated by the eruption, which disperses them to distances as great as 5 km from the vent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call