Abstract

Tannic acid methods have been applied to capture the exocytosis of peptide-containing granules from peptidergic neurons. The captured exocytoses have been quantitated to assess the proportion and amount of peptide released at different parts of the neuronal membrane. Examination of hypothalamic synaptic boutons shows that only about one-half of the peptidergic vesicles is exocytosed into the synaptic cleft and also that exocytosis also occurs from undilated peptidergic axons. Study of the magnocellular neurosecretory system reveals that all parts of their extensive terminal arborization appear to be equally capable to exocytose peptide. Only about one-half of their peptide is released from their nerve endings, which about the capillaries. The remainder is released much deeper in the lobules of secretory tissue where its principal target(s) could be the pituicytes and/or neurosecretory axons. Dendrites of magnocellular neurons are also capable of releasing peptide by exocytosis and dendrites could release sufficient oxytocin and vasopressin to account for the peptide known to be released into the hypothalamus. We conclude that peptidergic neurons release substantial amounts of peptides from all of their processes and that this must be taken into account when considering what functions those peptides might serve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.