Abstract

Symbiodinium D, a relatively rare clade of algal endosymbiont with a global distribution, has attracted interest as some of its sub-cladal types induce increased thermal tolerance and associated trade-offs, including reduced growth rate in its coral hosts. Members of Symbiodinium D are increasingly reported to comprise low-abundance ‘cryptic’ ( 30 % of corals per site found to harbour the symbiont. When the same samples were analysed using the conventional screening technique, denaturing gradient gel electrophoresis, Symbiodinium D1 was only detected in 12 populations and appeared to be hosted by <12 % of colonies where present (in agreement with other reported low prevalence/absences in O. annularis). Cryptic Symbiodinium D1 showed a mainly uniform distribution across the wider Caribbean region, although significantly more Mesoamerican Barrier Reef corals hosted cryptic Symbiodinium D1 than might be expected by chance, possibly as a consequence of intense warming in the region in 1998. Widespread prevalence of thermally tolerant Symbiodinium in O. annularis may potentially reflect a capacity for the coral to temporarily respond to warming events through symbiont shuffling. However, association with reduced coral calcification means that the ubiquitous nature of Symbiodinium D1 in O. annularis populations is unlikely to prevent long-term declines in reef health, at a time when maintaining reef growth is vital to sustain reef ecosystem function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call