Abstract

The gut microbiota in Lepidopterans demonstrates variability and susceptibility to environmental influences, thereby presenting opportunities for the acquisition of novel bacterial strains. Ectropis grisescens (Warren), a notorious Lepidopteran pest, causes substantial damage to tea crops. Prolonged application usage of bifenthrin for the management of this pest has led to increased resistance. This study aims to investigate the relationship between the gut microbiota, as shaped by long-term pesticide use and the resistance of E. grisescenes. We employed high-throughput sequencing of the 16S rRNA gene to analyze the gut microbiota compositions in bifenthrin-resistant (BIF-R) and bifenthrin-sensitive (BIF-S) strains. Bifenthrin-degrading strains were isolated from the gut of BIF-R using selective media. The degradation efficiency and products of bifenthrin by the key strain were detected using gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). The effect of the key strain on host resistance was verified in vivo. Finally, the distribution and abundance of the degrading bacterium, in conjunction with insect's pesticide resistance, were assessed in 22 distinct E. grisescens populations. Bifenthrin resistance was diminished in BIF-R following the removal of gut bacteria, a phenomenon not observed in BIF-S. Subsequent high-throughput amplicon sequencing revealed distinct structural differences in the gut microbiota between the two groups, notably an increased abundance of Glutamicibacter in BIF-R. A newly identified bacterial strain from BIF-R larvae, Glutamicibacter ectropisis (B1), demonstrated bifenthrin degradation efficiency and the main metabolite was 2,4-di-tert-butylphenol. Inoculation of B1 into BIF-S larvae conferred increased resistance to bifenthrin. Furthermore, we confirmed the prevalence of B1 in the gut of E. grisescens across 22 tea-growing areas in China. A positive correlation was observed between the absolute abundance of B1 and bifenthrin resistance in E. grisescens. This study represents the first identification of a novel gut bacterium, G. ectropisis, which mediates host resistance through the direct degradation of bifenthrin. This mechanism has been widely validated across 22 distinct populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.