Abstract

Soils support terrestrial ecosystem function and therefore are critical urban infrastructure for generating ecosystem services. Urbanization processes modify ecosystem function by changing the layers of soils identified as soil horizons. Soil horizons are integrative proxies for suites of soil properties and as such can be used as an observable unit to track modifications within soil profiles. Here, in an analysis of 11 cities representing 10 of the 12 soil orders, we show that urban soils have ∼50% fewer soil horizons than preurban soils. Specifically, B horizons were much less common in urban soils and were replaced by a deepening of A horizons and a shallowing of C horizons. This shift is likely due to two processes: (i) local management, i.e., soil removal, mixing, and fill additions, and (ii) soil development timelines, i.e., urbanized soils are young and have had short time periods for soil horizon development since urbanization (decades to centuries) relative to soil formation before urbanization (centuries to millennia). Urban soils also deviated from the standard A-B-C horizon ordering at a much greater frequency than preurban soils. Overall, our finding of common shifts in urban soil profiles across soil orders and cities suggests that urban soils may function differently from their preurban antecedents. This work introduces a basis for improving our understanding of soil modifications by urbanization and its potential effects on ecosystem functioning and thereby has implications for ecosystem services derived from urban landscapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call