Abstract

Sensory information is selectively or non-selectively enhanced and inhibited in the brain, but it remains unclear whether and how this occurs at the most peripheral level. Using invivo calcium imaging of mouse olfactory bulb and olfactory epithelium in wild-type and mutant animals, we show that odors produce not only excitatory but also inhibitory responses in olfactory sensory neurons (OSNs). Heterologous assays indicate that odorants can act as agonists to some but inverse agonists to other odorant receptors. We also demonstrate that responses to odor mixtures are extensively suppressed or enhanced in OSNs. When high concentrations of odors are mixed, widespread antagonism suppresses the overall response amplitudes and density. In contrast, a mixture of low concentrations of odors often produces synergistic effects and boosts the faint odor inputs. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy at the most peripheral level, contributing to robust sensory representations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call