Abstract

BackgroundThe study of speciation and maintenance of species barriers is at the core of evolutionary biology. During speciation the genome of one population becomes separated from other populations of the same species, which may lead to genomic incompatibility with time. This separation is complete when no fertile offspring is produced from inter-population matings, which is the basis of the biological species concept. Birds, in particular ducks, are recognised as a challenging and illustrative group of higher vertebrates for speciation studies. There are many sympatric and ecologically similar duck species, among which fertile hybrids occur relatively frequently in nature, yet these species remain distinct.ResultsWe show that the degree of shared single nucleotide polymorphisms (SNPs) between five species of dabbling ducks (genus Anas) is an order of magnitude higher than that previously reported between any pair of eukaryotic species with comparable evolutionary distances. We demonstrate that hybridisation has led to sustained exchange of genetic material between duck species on an evolutionary time scale without disintegrating species boundaries. Even though behavioural, genetic and ecological factors uphold species boundaries in ducks, we detect opposing forces allowing for viable interspecific hybrids, with long-term evolutionary implications. Based on the superspecies concept we here introduce the novel term "supra-population" to explain the persistence of SNPs identical by descent within the studied ducks despite their history as distinct species dating back millions of years.ConclusionsBy reviewing evidence from speciation theory, palaeogeography and palaeontology we propose a fundamentally new model of speciation to accommodate our genetic findings in dabbling ducks. This model, we argue, may also shed light on longstanding unresolved general speciation and hybridisation patterns in higher organisms, e.g. in other bird groups with unusually high hybridisation rates. Observed parallels to horizontal gene transfer in bacteria facilitate the understanding of why ducks have been such an evolutionarily successful group of animals. There is large evolutionary potential in the ability to exchange genes among species and the resulting dramatic increase of effective population size to counter selective constraints.

Highlights

  • The study of speciation and maintenance of species barriers is at the core of evolutionary biology

  • The single nucleotide polymorphisms (SNPs) were evaluated for minor allele frequency (MAF) spectrum, HardyWeinberg equilibrium and linkage disequilibrium in Anas platyrhynchos from nine localities on three continents

  • No clear genetic clusters among specimens of Anas platyrhynchos were discernible in this analysis when analysed separately, and the evident absence of genetic structure in mallards is reflected by low values of explained variance in the first and second principal component analyses (PCAs) (Figure 2a)

Read more

Summary

Introduction

The study of speciation and maintenance of species barriers is at the core of evolutionary biology. During speciation the genome of one population becomes separated from other populations of the same species, which may lead to genomic incompatibility with time This separation is complete when no fertile offspring is produced from inter-population matings, which is the basis of the biological species concept. If introgression of genetic material of one species into another occurs regularly enough in the absence of genomic incompatibility, one would expect that these events oppose genetic drift by exchange of alleles that the two subsequently will have in common. Such potential sharing of alleles at genetic loci through genetic admixture can directly be observed by the study of genetic markers. With SNP data from multiple species, one can study the sharing of genetic material at the same loci, providing a new means of studying species divergence by the speed of loss of genetic coherence

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.