Abstract

Phenotypic convergence is rampant throughout the tree of life. While recent studies have made significant progress in ascertaining the proximate mechanisms underlying convergent phenotypes, less is known about the frequency and predictability with which convergent phenotypes arise via the same or multiple pathways at the macroevolutionary scale. We investigated the proximate causes and evolutionary patterns of red flower color in the tomato family, Solanaceae, using large-scale data mining and new sequence data to reconstruct a megaphylogeny of 1341 species. We then combined spectral and anatomical data to assess how many times red flowers have evolved, the relative contribution of different pathways to independent origins of red, and whether the underlying pathway is predicted by phylogenetic relatedness. We estimated at least 30 relatively recent origins of red flowers using anthocyanins, carotenoids, or a dual production of both pigments, with significant phylogenetic signal in the use of anthocyanins and dual production, indicating that closely related red-flowered species tend to employ the same mechanism for coloration. Our study is the first to test whether developmental pathways exhibit phylogenetic signal and implies that historical contingency strongly influences the evolution of new phenotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.