Abstract

L1 transposons occupy 17% of the human genome and are widely exapted for the regulation of human genes, particularly in breast cancer, where we have previously shown abundant cancer-specific transcription factor (TF) binding sites within the L1PA2 subfamily. In the current study, we performed a comprehensive analysis of TF binding activities in primate-specific L1 subfamilies and identified pervasive exaptation events amongst these evolutionarily related L1 transposons. By motif scanning, we predicted diverse and abundant TF binding potentials within the L1 transposons. We confirmed substantial TF binding activities in the L1 subfamilies using TF binding sites consolidated from an extensive collection of publicly available ChIP-seq datasets. Young L1 subfamilies (L1HS, L1PA2 and L1PA3) contributed abundant TF binding sites in MCF7 cells, primarily via their 5′ UTR. This is expected as the L1 5′ UTR hosts cis-regulatory elements that are crucial for L1 replication and mobilisation. Interestingly, the ancient L1 subfamilies, where 5′ truncation was common, displayed comparable TF binding capacity through their 3′ ends, suggesting an alternative exaptation mechanism in L1 transposons that was previously unnoticed. Overall, primate-specific L1 transposons were extensively exapted for TF binding in MCF7 breast cancer cells and are likely prominent genetic players modulating breast cancer transcriptional regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.