Abstract

To assess the extent of brain involvement during focal epileptic activity, we studied patterns of cortical and subcortical metabolic changes coinciding with interictal epileptic discharges (IEDs) using group analysis of simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) scans in patients with focal epilepsy. We selected patients with temporal lobe epilepsy (TLE, n = 32), frontal lobe epilepsy (FLE, n = 14), and posterior quadrant epilepsy (PQE, n = 20) from our 3 Tesla EEG-fMRI database. We applied group analysis upon the blood oxygen-level dependent (BOLD) response associated with focal IEDs. Patients with TLE and FLE showed activations and deactivations, whereas in PQE only deactivations occurred. In TLE and FLE, the largest activation was in the mid-cingulate gyri bilaterally. In FLE, activations were also found in the ipsilateral frontal operculum, thalamus, and internal capsule, and in the contralateral cerebellum, whereas in TLE, we found additional activations in the ipsilateral mesial and neocortical temporal regions, insula, and cerebellar cortex. All three groups showed deactivations in default mode network regions, the most widespread being in the TLE group, and less in PQE and FLE. These results indicate that different epileptic syndromes result in unique and widespread networks related to focal IEDs. Default mode regions are deactivated in response to focal discharges in all three groups with syndrome specific pattern. We conclude that focal IEDs are associated with specific networks of widespread metabolic changes that may cause more substantial disturbance to brain function than might be appreciated from the focal nature of the scalp EEG discharges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call