Abstract

Increasing reactive nitrogen (N) to terrestrial ecosystems is considered to enhance ecosystem carbon sink, which plays a critical role in ameliorating global warming. Besides this indirect buffering of temperature rise, the N-induced enhancement of vegetation growth may exert a biophysical cooling effect on soils. However, the magnitude and drivers of this cooling effect have rarely been evaluated. Here, using a global meta-analysis with 321 paired measurements, we demonstrated a widespread topsoil cooling (−0.30 °C in average) under anthropogenic N enrichment, which was primarily associated with the increase in aboveground biomass. This biophysical cooling could also buffer topsoil temperature rise by an average of 0.39 °C under experimental warming. Further, the reduced soil temperature was found to contribute to a reduction of soil respiration rate as temperature declines gradually. Overall, our results underpin a previously overlooked function of global N enrichment—the lowering of topsoil temperature, which suggests that the warming of topsoil may not be as fast as previously predicted under future global change scenarios. This biophysical cooling effect will also slow down soil carbon emissions and further mitigate climate warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call