Abstract

The potential for therapeutic antibody treatment of neurological diseases is limited by poor penetration across the blood-brain barrier. I.c.v. delivery is a promising route to the brain; however, it is unclear how efficiently antibodies delivered i.c.v. penetrate the cerebrospinal spinal fluid (CSF)-brain barrier and distribute throughout the brain parenchyma. We evaluated the pharmacokinetics and pharmacodynamics of an inhibitory monoclonal antibody against β-secretase 1 (anti-BACE1) following continuous infusion into the left lateral ventricle of healthy adult cynomolgus monkeys. Animals infused with anti-BACE1 i.c.v. showed a robust and sustained reduction (~70%) of CSF amyloid-β (Aβ) peptides. Antibody distribution was near uniform across the brain parenchyma, ranging from 20 to 40nM, resulting in a ~50% reduction of Aβ in the cortical parenchyma. In contrast, animals administered anti-BACE1 i.v. showed no significant change in CSF or cortical Aβ levels and had a low (~0.6nM) antibody concentration in the brain. I.c.v. administration of anti-BACE1 resulted in enhanced BACE1 target engagement and inhibition, with a corresponding dramatic reduction in CNS Aβ concentrations, due to enhanced brain exposure to antibody.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call