Abstract

Oxidative stress contributes to tumourigenesis by altering gene expression. One accompanying modification, 8-oxoguanine (o8G) can change RNA-RNA interactions via o8G•A base pairing, but its regulatory roles remain elusive. Here, on the basis of o8G-induced guanine-to-thymine (o8G > T) variations featured in sequencing, we discovered widespread position-specific o8Gs in tumour microRNAs, preferentially oxidized towards 5' end seed regions (positions 2-8) with clustered sequence patterns and clinically associated with patients in lower-grade gliomas and liver hepatocellular carcinoma. We validated that o8G at position 4 of miR-124 (4o8G-miR-124) and 4o8G-let-7 suppress lower-grade gliomas, whereas 3o8G-miR-122 and 4o8G-let-7 promote malignancy of liver hepatocellular carcinoma by redirecting the target transcriptome to oncogenic regulatory pathways. Stepwise oxidation from tumour-promoting 3o8G-miR-122 to tumour-suppressing 2,3o8G-miR-122 occurs and its specific modulation in mouse liver effectively attenuates diethylnitrosamine-induced hepatocarcinogenesis. These findings provide resources and insights into epitranscriptional o8G regulation of microRNA functions, reprogrammed by redox changes, implicating its control for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call