Abstract
Abstract Suprathermal ions in the corona are thought to serve as seed particles for large gradual solar energetic particle (SEP) events associated with fast and wide coronal mass ejections (CMEs). A better understanding of the role of suprathermal particles as seed populations for SEP events can be made by using observations close to the Sun. We study a series of SEP events observed by the Integrated Science Investigation of the Sun (IS⊙IS) suite on board the Parker Solar Probe (PSP) from 2020 May 27 to June 2, during which PSP was at heliocentric distances between ∼0.4 and ∼0.2 au. These events were also observed by the Ahead Solar TErrestrial RElations Observatory (STEREO-A) near 1 au, but the particle intensity magnitude was much lower than that at PSP. We find that the SEPs should have spread in space as their source regions were distant from the nominal magnetic footpoints of both spacecraft and the parent CMEs were slow and narrow. We study the decay phase of the SEP events in the ∼1–2 MeV proton energy range at PSP and STEREO-A, and discuss their properties in terms of both continuous injections by successive solar eruptions and the distances where the measurements were made. This study indicates that seed particles can be continuously generated by eruptions associated with slow and narrow CMEs, spread over a large part of the inner heliosphere, and remain there for tens of hours, even if minimal particle intensity enhancements were measured near 1 au.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.