Abstract

High-performance pressure sensors are garnering interest in human-computer interaction technology, wearable devices, and bionic electronic skin development. However, highly sensitive sensors frequently have a limited response range. In this work, we developed composites with outstanding conductive network structures through the synergistic effect of transition metal carbides (MXene) and multi-walled carbon nanotubes (MWCNTs). Additionally, pressure sensors with various TPMS structures were prepared using innovative parametric design and Fused Deposition Molding (FDM) printing. Due to the stable synergistic conductive network and distinctive curved surface structure, the sensors exhibit exceptional sensing performance. This includes high sensitivity ranging from 4.67 MPa−1 to 7.03 MPa−1 (within the range of 0–0.1 MPa), a broad operating range (maximum 10 MPa), rapid response and recovery times (326 ms/193.4 ms), and long-term fatigue resistance (over 10,000 s cycles). By integrating mechanical properties, sensing properties, and finite element simulations, we analyzed the mechanism underlying the impact of various TPMS pore structures on the sensitivity and response range of the pressure sensor. In addition, the sensors were arrayed as 4 × 4 modules to successfully recognize a wide range of foot movements from different volunteers. These findings illuminate potential applications in human motion detection, healthcare rehabilitation, and artificial intelligence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.