Abstract

A fundamental problem of adaptive-optics systems is the very narrow corrected field of view that can be obtained because turbulence is extended in altitude throughout the atmosphere. The correctable field of view is of the order of 5-10 µrad at visible wavelengths and increases as the wavelength increases. Previous concepts to broaden the corrected field of view have been hardware oriented, requiring multiple wave-front sensor (WFS) measurements to control multiple deformable mirrors. We analyze the average and the signal-to-noise-ratio performance of an image measurement and postprocessing technique that uses simultaneous measurements of a short-exposure compensated image measured in an off-axis direction; an additional WFS measurement is taken in the off-axis direction. Results are presented for infinite-altitude WFS beacons driving both the WFS for the adaptive optics and the WFS looking in the off-axis direction, a variety of seeing and WFS light-level conditions, and off-axis angles from two to six times the isoplanatic angle. This technique improves the average effective transfer function out to a field angle of at least six times the isoplanatic angle while providing a higher signal-to-noise ratio in the spatial frequency domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call