Abstract

We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.

Highlights

  • Narrowband continuous-wave (CW) stabilized lasers have many applications in experimental atomic and molecular physics, examples including laser spectroscopy, laser cooling, and coherent optical manipulation of atoms and molecules

  • We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs)

  • We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset

Read more

Summary

Introduction

Narrowband continuous-wave (CW) stabilized lasers have many applications in experimental atomic and molecular physics, examples including laser spectroscopy, laser cooling, and coherent optical manipulation of atoms and molecules. A commonlyused method is to lock a laser source directly to a nearby optical or molecular reference transition, after which part of the laser output is sent through a variable-frequency-shifting device such as an acousto-optic modulator (AOM) or an electro-optic modulator (EOM). Both AOMs and EOMs have the practical advantage that optical frequency tuning is readily accomplished by adjusting the radio frequency (RF) of the device driver electronics. A practical disadvantage of the latter two methods is the need for spectrally pure, high-end microwave oscillators

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.