Abstract

An optically tunable frequency-doubling microwave generation technique based on stimulated Brillouin scattering (SBS) in optical fibers is proposed and experimentally demonstrated. Due to the strong dispersion characteristics in SBS, when a up/2 phase shift is imposed on the optical carrier of an amplitude-modulated signal by SBS, only a frequency-doubling microwave signal from the beating between the optical carrier and the 1st sidebands is generated. Due to the inherent narrowband character of SBS and the phase shift being only imported on to the optical carrier while the sidebands are kept unchanged, the frequency-doubling with large frequency tunability is realized, the operational bandwidth is just limited by other optical device deployed. In addition, all the required optical signals and pumps can be generated from the same laser source, the influence from the wavelength drifting is eliminated, so the stability of the system is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.