Abstract

Baicalin has various neuroprotective effects in models of nervous system disease. Our study has shown baicalin could alleviate depressive-like behaviors in a neuroendocrine mouse model. But the systematic metabolic characteristic and particular targets of baicalin in regulating depressive behaviors have never been investigated. Therefore, this study aims to reveal the hippocampal metabolic profiling of chronic unpredictable mild stress (CUMS) induced depressive rats and the potential metabolic variations after baicalin treatment. We first used the sucrose preference test and open field test to access the antidepressant effects of baicalin. Then, metabolites of the hippocampus after baicalin therapy were monitored by widely-targeted metabolomics based on ultra-performance liquid chromatography-tandem mass spectrometry technology. Finally, the potential mechanism associated with neurogenesis obtained from metabolomics was verified by immunohistochemistry. The results showed that baicalin(40,80 mg/kg) could significantly alleviate depressive behaviors induced by CUMS as demonstrated by an increase in sucrose preference and movement distance and stand-up times in open field test. In the metabolomic analysis, a total of 733 metabolites were identified after baicalin treatment including 15 differential metabolites such as organic acid and its derivatives, heterocyclic compounds, fatty acid, bile acids, amino acid and its metabolites, and so on. Enrichment for differential metabolites showed that the differential metabolites might be involved in the process of folate and cofactor biosynthesis, cholesterol metabolism, primary bile acid biosynthesis, tyrosine metabolism and dopaminergic synapse. Moreover, immunohistochemical analysis confirmed baicalin could facilitate hippocampal neurogenesis of depressive rats in CUMS model. These results suggested baicalin might exert antidepressant effects through regulating the differential metabolites which might play a crucial role in inhibiting oxidative stress and improving neurogenesis. Our findings wish to discover the potential mechanism of baicalin on depression from the metabolomics perspective and promote its clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call