Abstract

Cultivation altitude is a comprehensive environmental factor that significantly affects tea quality. To gain a deeper understanding of the effect of cultivation altitude on tea metabolites, a widely targeted metabolomic method based on ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was used to analyze tea samples derived from three altitudes (86 m, 256 m, and 880 m) of two cultivars, ‘Mingke 1’ (MK) and ‘Fuyun 6’ (FY). The results showed that distinct groups of tea samples from different altitudes and cultivars were observed based on PCA. A total of 64 and 56 altitude-related differential metabolites were identified in MK and FY, respectively. Among them, 16 compounds were consistent in both cultivars and were clustered in the metabolic pathways for flavonoid (11 compounds), amino acid (3), and fatty acid (2). The content of all flavonoids and one amino acid (L-aspartic acid) gradually decreased with increasing altitude; on the contrary, the others showed an opposite trend. Furthermore, we identified 57 differential metabolites between two cultivars. Two specific compounds (8-C-hexosyl chrysoeriol O-hexoside and pelargonidin 3-O-β-D-glucoside) were exclusively found in MK, while one compound (4-hydroxybenzoic acid) was present only in FY. These findings offer insight into the metabolic responses of tea plants to different altitudes, providing further understanding on the influence of the environment on tea plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call