Abstract

We discuss the technique of Wide-field imaging as it applies to Very Long Baseline Interferometry (VLBI). In the past VLBI data sets were usually averaged so severely that the field-of-view was typically restricted to regions extending a few hundred milliarcseconds from the phase centre of the field. Recent advances in data analysis techniques, together with increasing data storage capabilities, and enhanced computer processing power, now permit VLBI images to be made whose angular size represents a significant fraction of an individual antenna's primary beam. This technique has recently been successfully applied to several large separation gravitational lens systems, compact Supernova Remnants in the starburst galaxy M82, and two faint radio sources located within the same VLA FIRST field. It seems likely that other VLBI observing programmes might benefit from this wide-field approach to VLBI data analysis. With the raw sensitivity of global VLBI set to improve by a factor 4–5 over the coming few years, the number of sources that can be detected in a given field will rise considerably. In addition, a continued progression in VLBI's ability to image relatively faint and extended low brightness temperature features (such as hot-spots in large-scale astrophysical jets) is also to be expected. As VLBI sensitivity approaches the μJy level, a wide-field approach to data analysis becomes inevitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call