Abstract

Real time, high-speed image stabilization with a retinal tracking scanning laser ophthalmoscope (TSLO) enables new approaches to established diagnostics. Large dynamic range, wide-field stabilized Doppler flowmetry imaging was demonstrated in initial human subject testing with a large frequency range and up to 40 deg fields of view. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the ocular fundus. The fundus imaging method is a quasi-confocal line-scanning laser ophthalmoscope (LSLO). By locking to the retina and performing a slow scan of the laser line imager taking up to 30 seconds, frequency-resolved retinal perfusion and vascular flow images were obtained. The tracking system and auto-relock algorithms after blinks allowed the full image to be captured free of eye motion artifacts. Image cubes comprised of 512 by 512 spatial pixels by 512 or more temporal pixels were captured with a line rate of up to 20 kHz. The line sensor integrates, as opposed to conventional SLO flowmeters, thus minimizing aliasing that contributes to velocity errors. Fast Fourier Transform (FFT) power spectra at each image pixel were computed. Image reconstruction accuracy was typically better than one pixel width. Doppler frequency resolution from 14 Hz to 3.675 kHz was demonstrated in this work. Pulsatile flow effects were observed. Normal adult subjects and patients were tested with or without mydriasis to characterize flow imaging performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.