Abstract

As the incidence of esophageal adenocarcinoma continues to rise, there is a need for improved imaging technologies with contrast to abnormal esophageal tissues. To inform the design of optical technologies that meet this need, we characterize the spatial distribution of the scattering and absorption properties from 471 to 851 nm of eight resected human esophagi tissues using Spatial Frequency Domain Imaging. Histopathology was used to categorize tissue types, including normal, inflammation, fibrotic, ulceration, Barrett's Esophagus and squamous cell carcinoma. Average absorption and reduced scattering coefficients of normal tissues were 0.211 ± 0.051 and 1.20 ± 0.18 mm-1 , respectively at 471 nm, and both values decreased monotonically with increasing wavelength. Fibrotic tissue exhibited at least 68% larger scattering signal across all wavelengths, while squamous cell carcinoma exhibited a 36% decrease in scattering at 471 nm. We additionally image the esophagus with high spatial frequencies up to 0.5 mm-1 and show strong reflectance contrast to tissue treated with radiation. Lastly, we observe that esophageal absorption and scattering values change by an average of 9.4% and 2.7% respectively over a 30 minute duration post-resection. These results may guide system design for the diagnosis, prevention and monitoring of esophageal pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.