Abstract

We present wide-field near-infrared images of the densest part of the L1551 dark cloud taken with the narrow-band filters for [Fe II] λ 1.644 μm and H2 v = 1-0 S(1) lines, together with the broadband H and K s filters. Numerous [Fe II] and H2 emission features were detected from the regions around HL/XZ Tau, HH 30, HH 262, L1551 NE, and L1551 IRS 5. Most of the [Fe II] features are compact or jet-like, suggesting that the emission arises from fast shocks occurring in the ejecta of jets. The H2 features are more diffuse and widely distributed in outflow lobes, with none of the H2 features showing the well-collimated emission associated with jets. This implies that the H2 emission originates from slower shocks where the ejecta interacts with ambient material. The outflow structure in the vicinity of the deeply embedded object L1551 NE is revealed, featuring a well-collimated, spatially continuous [Fe II] jet penetrating a fan-shaped infrared reflection nebula. The tangential velocities of knots in the L1551 NE jet are estimated to be 140-190 km s–1 from their proper motions, implying an inclination of 45°-60° for the jet axis. A counter-jet from L1551 IRS 5 is detected for the first time in [Fe II]; this probably corresponds to the northern-most of the two jets on the blueshifted side. The relative brightness of the counter-jet suggests a visual extinction of 20-30 mag. The [Fe II] emissions from collimated jets are relatively strong toward L1551 NE and L1551 IRS 5 compared to those toward HL Tau and HH 30. This implies that the jets from the former objects, which are more embedded, have a higher shock velocity and/or a larger gas density than the latter, more revealed objects. The results presented here show that the near-infrared [Fe II] emission is a useful probe of well-collimated jets from deeply embedded sources, in much the same way that optical [S II] emission is used for relatively revealed objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.