Abstract

Spatial coherence function (SCF) is a complex function of two spatial coordinates that, in general, carries more information than the bare intensity distribution. A fast and quantitatively accurate measurement of the SCF is extremely important for a range of applications in optical sensing and imaging. Here, we demonstrate an efficient two-step procedure for measuring the full-field complex coherence function. The measurement relies on an optimized design of a wavefront shearing interferometer capable of characterizing spatially inhomogeneous fields over an extended angular domain. The measurement precision is confirmed by the excellent agreement with a numerical estimation based on Fresnel calculations. We demonstrate that the sensitivity and the measurement range afforded by our instrument permits us to reliably describe the differences in the complex coherence functions that are due to subtle modifications in the shape, position, and orientation of radiation sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.