Abstract
Wideband tympanometry performs a more thorough analysis of middle-ear mechanics than the conventional single-frequency method with a 226-Hz probe tone. The present work examines the sensitivity of wideband tympanometry to the stiffness of the stapes-annular ligament system in relation to intracranial pressure (ICP) and labyrinthine fluid pressure. Here, body tilt allowed ICP to be set at different values. Sixty-eight ears of volunteers were tested sequentially in upright, supine, head-down (-30°) and upright postures. Energy absorbance of the ear was measured in these postures with a commercially available wideband-tympanometry device between 0.25 and 3 kHz, at ear-canal pressures between -600 and 300 daPa. In each posture, it was possible to find a single (posture-dependent) pressure in the ear canal at which a tympanometric peak occurred at all frequencies below about 1.1 kHz. The average across ears of tympanometric-peak pressure (TPP), close to 0 in upright posture, got increasingly positive, +19 daPa in supine and +27 daPa in head-down positions. The three-dimensional plot of energy absorbance against frequency and pressure displayed an invariant shape, merely shifting with TPP along the pressure axis. Thus, a properly adjusted ear-canal pressure neutralized the effects of ICP on the ear's energy absorbance. Comparisons to published invasive assessments of ICP in the different tested body positions led to the proposed relationship ICP ≈ 15 TPP, likely describing the transformer effect between tympanic membrane and stapes-annular ligament system at quasi-static pressures. With wideband tympanometry, the middle ear may serve as a precision scales for noninvasive ICP measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.