Abstract

A wide-band time-division-code-division multiple-access (TD-CDMA) medium access control (MAC) protocol is introduced in this paper. A new minimum-power allocation algorithm is developed to minimize the interference experienced by a code channel such that heterogeneous bit-error rate (BER) requirements of multimedia traffic are satisfied. Further, from analysis of the maximum capacity of a time slot, it is concluded that both rate and BER scheduling are necessary to reach a maximum capacity. Based on the new minimum-power allocation algorithm as well as on rate and BER scheduling concepts, a new scheduling scheme is proposed to serve packets with heterogeneous BER and quality of service (QoS) requirements in different time slots. To further enhance the performance of the MAC protocol, an effective connection admission control (CAC) algorithm is developed based on the new minimum-power allocation algorithm. Simulation results show that the new wide-band TD-CDMA MAC protocol satisfies the QoS requirements of multimedia traffic and achieves high overall system throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call