Abstract

Wideband and widebeam synthetic aperture sonar (SAS) can provide information on the frequency- and aspect-dependent scattering in a scene. We suggest an approach to predict the quality of the sensor data over the available frequencies and aspect angles. We relate the typical spatial domain quality metrics to their wave number domain (WD) counterpart, and use these to map the data quality in WD. Because SAS arrays often are undersampled along-track, we pay particular attention to data degradation from aliasing. We use the proposed approach to examine how three SAS image formation algorithms based on time domain backprojection (TDBP) access data of different quality from wideband SAS systems. We illustrate the results with predictions for a generic SAS design and demonstrate the findings on two experimental systems. We observe that the maximum support of high-quality data is achieved through BP onto a high-resolution grid followed by WD filtering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.