Abstract

Two 25-ns high-temperature superconductor delay lines with novel double-spiral meander line structures were fabricated and measured, one based on the conventional coplanar waveguide (CPW) and the other based on the conductor-backed CPW. Compared with other published studies, the performance of the Conductor-backed CPW delay line is among the best in terms of the widest resonance-free band (2-18 GHz), low insertion loss (0.06 dB/ns at 60 K and 10 GHz), small ripple (<1 dB up until 16 GHz), and small dispersion (<2 ns in the variation of group delay between 2-18 GHz). This is also the first coplanar delay line successfully demonstrated without using wire bonding. The reflecting elements in the delay lines were identified through time-domain measurements. Full-wave simulations were performed to compare the double-spiral meander-line structure with conventional double-spiral line, and to identify the geometric factors restricting the bandwidth of the double-spiral meander line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.