Abstract

This paper proposes a substrate integrated waveguide bandpass filter (SIW BPF), exploiting the through-dielectric via (TDV)-based 3-D integrated circuit (3-D IC) technology. The SIW BPF is designed on the dielectric cavity that is etched on the traditional low-resistivity silicon (LRSi) in a 3-D IC system, acting as the insulating material between through-silicon via plugs and LRSi. This construction can reduce prominent eddy current losses in LRSi and coupling losses among TDV plugs for the millimeter-wave application. Benzocyclobutene and glass are chosen as the dielectric cavity due to the low dielectric constant and loss tangent. The detailed design procedure beginning from the normalized Chebyshev low-pass filter to the final optimized SIW BPF is presented. The filter having a 12.5% fractional bandwidth is centered at 159.67 GHz. The return losses and insertion loss across the passband are about −10 and −1.5 dB, respectively. Numerical analysis of the advanced design system and full-wave simulation results of Ansoft’s HFSS show a good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call