Abstract

As the bandwidth increases, the high-speed sampling rate becomes the bottleneck for the development of wideband spectrum sensing. Wideband spectrum sensing with sub-Nyquist sampling attracts more attention and modulated wideband converter (MWC) is an attractive sub-Nyquist sampling system. For the purpose of breaking the system structure limit, an advanced sub-Nyquist sampling framework is proposed to simplify the MWC system structure, adopting the single sampling channel structure with a frequency shifting module to acquire the sub-Nyquist sampling values. In order to recover the signal support information, the sensing matrix must be built according to the only one mixing function. Most existing support recovery methods rely on some prior knowledge about the spectrum sparsity, which is difficult to acquire in practical electromagnetic environment. To address this problem, we propose an adaptive residual energy detection algorithm (ARED), which bypasses the need for the above-mentioned prior knowledge. Simulation results show that, without requiring the aforementioned prior knowledge, the ARED algorithm based on the advanced sub-Nyquist sampling framework has the similar performance as MWC and even higher than MWC in some cases using only one sampling channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call