Abstract

Wideband direction of arrival (DOA) estimation using a sensor array plays a fundamental role in passive sonar signal processing. Although sparsity-based DOA estimation methods can attain high resolution in the condition of few snapshots and low signal-to-noise ratio, the localization accuracy is seriously affected by strong interferences. In this paper, a matrix filter with nulling (MFN) is used to pass weak targets in sector-of-interest (passband) while attenuating the out-of-sector (stopband) interferences by forming deep nulls toward the directions of interferences adaptively. Then, a method based on sparse spectrum fitting (SpSF) and MFN is proposed to localize closely spaced wideband signals in a strong interference environment. In comparison with the minimum variance distortionless response and SpSF, the proposed method achieves higher localization accuracy, which is verified by simulation and experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.