Abstract

This paper presents a high speed configurable FPGA-based wideband channel sounder with signal bandwidths up to 200 MHz and results of a study of dynamic urban picocell channel. The use of FPGA allows the sounder to be adaptable for measurements in different scenarios. Adaptable options include changes to the waveform, bandwidth, channel sampling rate and real-time averaging to improve signal-to-noise ratio in weak signal conditions. The implemented architecture has led to a 70% reduction in size and weight compared to sounders in use elsewhere making it ideal for mobile channel measurements. The study of an urban picocell channel has shown that dynamic variation due to automotive traffic introduces average signal strength fades of up to 5 dB but causes frequency selective fading with depths of up to 40 dB. Existing channel models assume antenna heights of more than 6 m and path lengths of more than 30 m. Therefore there is a need for shorter path models and this paper proposes a linear picocell channel model for static and dynamic urban environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.