Abstract

We propose an adjoint variable method (AVM) for efficient wideband sensitivity analysis of the dispersive plasmonic structures. Transmission Line Modeling (TLM) is exploited for calculation of the structure sensitivities. The theory is developed for general dispersive materials modeled by Drude or Lorentz model. Utilizing the dispersive AVM, sensitivities are calculated with respect to all the designable parameters regardless of their number using at most one extra simulation. This is significantly more efficient than the regular finite difference approaches whose computational overhead scales linearly with the number of design parameters. A Z-domain formulation is utilized to allow for the extension of the theory to a general material model. The theory has been successfully applied to a structure with teethshaped plasmonic resonator. The design variables are the shape parameters (widths and thicknesses) of these teeth. The results are compared to the accurate yet expensive finite difference approach and good agreement is achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.