Abstract

The Karlsruhe Tritium Neutrino Experiment (KATRIN) measures the effective electron anti-neutrino mass with an unprecedented design sensitivity of 0.2 eV (90 % C.L.). In this experiment, the energy spectrum of beta electrons near the tritium decay endpoint is analyzed with a highly accurate spectrometer. To reach the KATRIN sensitivity target, the retarding voltage of this spectrometer must be stable to the ppm (1 × 10-6) level and well known on various time scales (μs up to months), for values around -18.6 kV. A custom-designed high-voltage regulation system mitigates the impact of interference sources in the absence of a closed electric shield around the large spectrometer vessel. In this article, we describe the regulation system and its integration into the KATRIN setup. Independent monitoring methods demonstrate a stability within 2 ppm, exceeding KATRIN's specifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call