Abstract

A wideband perforated rectangular dielectric resonator antenna (RDRA) reflectarray is presented. The array of RDRA are formed from one piece of material. Air-filled holes are drilled into the material around the RDRA. This technique of fabricating RDRA reflectarray using perforations eliminates the need to position and bond individual elements in the reflectarray and makes the fabrication of the RDRA reflectarray feasible. The ground plane below the reflectarray elements is folded to form a central rectangular concave dip so that an air-gap is formed between the RDRA elements and the ground plane in order to increase the bandwidth. Full-wave analysis using the finite integration technique is applied. Three cases are studied. In the first one, the horn antenna is placed at the focal point to illuminate the reflectarray and the main beam is in the broadside direction. In the second one, the horn antenna is placed at the focal point and the main beam is at ±30 degrees off broadside direction. In the third one, an offset feed RDRA reflectarray is considered. A variable length RDRA provides the required phase shift at each cell on the reflectarray surface. The normalized gain patterns, the frequency bandwidth, and the aperture efficiency for the above cases are calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call