Abstract

Wideband omnidirectional antennas are essential components in radio monitoring and communication systems, enabling the reception of signals from all directions over a wide bandwidth. This paper presents a novel wideband omnidirectional antenna design that achieves a 1-dB gain variation across its azimuthal plane within a bandwidth of 1.8 GHz to 7.77 GHz. The antenna's exceptional performance is attributed to two flower-bud-shaped monopoles that, through pattern superposition, generate a wideband omnidirectional radiation pattern. Analysis shows that the use of a circular ground plane also reduces the azimuthal gain variation. Additionally, an embedded matching structure integrated into the antenna's base enhances the impedance bandwidth without compromising its compact size. Analytical investigations demonstrate that the matching structure effectively behaves as a five-order LC circuit, explaining its wideband matching capabilities. Furthermore, structural modifications effectively reduce side lobe levels, ensuring minimal interference. Experimental measurements corroborate the antenna's omnidirectional radiation pattern and confirm that the azimuthal gain variation remains within 1-dB throughout its bandwidth, while maintaining an S11 below -10 dB from 1.8 GHz to 7.7 GHz. The antenna's bandwidth overlaps with the spectrum intensively used in mobile communication technologies, such as LTE, Bluetooth, and IEEE 802.11be, as well as radiolocation applications, making it a promising choice for unmanned aerial vehicles conducting communication and radio monitoring missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.