Abstract

A multiwavelength Brillouin fiber laser (BFL) is demonstrated using a 1.55-µm AlGaInAs/InP microcavity laser as a seed source. The combination of a nonlinear fiber cavity and a feedback loop leads to multiwavelength generation with a channel spacing of double-Brillouin-frequency assisted by cavity-enhanced four-wave mixing. The amplified output of a dual-mode lasing square microcavity laser with a wavelength interval of 1.5 nm is applied as the pump source for the broadband multiwavelength generation. A wideband multiwavelength BFL covering from 1490 nm to 1590 nm is successfully generated at an optimized pump power of 25 dBm and a feedback power of -17.2dBm. The power stability of 0.82 dB over a 60 min duration of the multiwavelength BFL can satisfy the demands for the optical fiber sensing and microwave photonic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.