Abstract

We present wideband and large free spectral range optical filters with steep passband edges for the selection of adjacent WDM communication channels that can be reliably fabricated with mainstream silicon photonics technology. The devices are based on three cascaded stages of coupled resonator optical waveguides loaded on a common bus waveguide. These stages differ in the number of resonators but are implemented with exactly identical unit cells, comprised of a matched racetrack resonator layout and a uniform spacing between cells. The different number of resonators in each stage allows a high rejection in the through port response enabled by the interleaved distribution of zeros. Furthermore, the exact replication of a unique cell avoids the passband ripple and high lobes in the stopband that typically arise in apodized coupled resonator optical waveguide based filters due to fabrication and coupling induced variations in the effective path length of each resonator. Silicon photonics filters designed for the selection of 9 adjacent optical carriers generated by a 100 GHz free spectral range comb laser have been successfully fabricated with 248 nm DUV lithography, achieving an out-of-band rejection above 11 dB and an insertion loss of less than 0.5 dB for the worst channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call