Abstract
We study theoretically wideband modulation instability at combination frequencies in media having cubic nonlinearity of self-focusing type along with the higher-order defocusing nonlinearity. It is assumed that in a medium with a purely cubic nonlinearity, the medium dispersion does not permit modulation instability. In this case, a collapse of the wave field exists if the beam power is higher than the critical power of self-focusing. The higher-order nonlinearity limits the field at the nonlinear focus, and the instability at combination frequencies becomes possible. It turns out that the field at the nonlinear focus increases with increasing excess of the beam power over the critical power of self-focusing. The obtained values of the nonlinear dielectric permittivity are used for determination of the growth rates of instability at combination frequencies. These growth rates ensure an increase in the combination fields from noise levels up to values comparable with the field of the high-power beam. Such an increase takes place if the beam power is severalfold higher than the critical one. The developed theory can be used for explanation of spectrum superbroadening during self-focusing of sufficiently short laser pulses and high-harmonic generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.