Abstract

We provide direct experimental comparison of the optoacoustic imaging performance of two different 64-element linear detector array (LDA) units based on polyvinylidene difluoride (PVDF) films. The first LDA unit was based on traditional flexible circuit (FC) technology and consisted of an FC glued to the nonmetalized signal surface of a 28-μm-thick PVDF film providing 300 / 80-μm axial resolution/lateral resolution (AR/LR) and 0.4-kPa noise equivalent pressure of its single element. The other LDA unit was manufactured using a technology of low-temperature photolithographic etching (PE) of a signal electrode onto a 25-μm-thick PVDF film providing 300 / 40-μm AR/LR and 1kPa noise equivalent pressure. As compared with a previously reported LDA unit based on a 100-μm PVDF thick film, the main advantage of using the thinner PVDF films was 10-fold improvement in axial resolution, whereas the main drawback was 10-fold increased noise equivalent pressure. In terms of in vivo imaging performance, higher bandwidth of PE LDA probe was more important than the higher sensitivity of FC LDA unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.